冰雹风险评估对于估计和减少对农作物,果园和基础设施的破坏是必要的。此外,它有助于估计和减少企业,尤其是保险公司的损失。但是冰雹预测具有挑战性。用于此目的的设计模型的数据是树维的地理空间时间序列。关于可用数据集的分辨率,冰雹是一个非常本地的事件。同样,冰雹事件很少见 - 观测中只有1%的目标标记为“冰雹”。现象和短期冰雹预测的模型正在改善。将机器学习模型引入气象学领域并不是什么新鲜事。还有各种气候模型反映了未来气候变化的可能情况。但是,没有用于数据驱动的机器学习模型来预测给定区域的冰雹频率变化。后一项任务的第一种可能方法是忽略空间和时间结构,并开发一种能够将气象变量的给定垂直轮廓分类为有利于冰雹形成的模型。尽管这种方法肯定忽略了重要的信息,但它的加权非常轻,很容易扩展,因为它将观察值视为彼此独立的。更高级的方法是设计能够处理地理空间数据的神经网络。我们在这里的想法是将负责处理空间数据处理的卷积层与能够使用时间结构工作的复发神经网络块相结合。这项研究比较了两种方法,并引入了一个适合预测冰雹频率变化的任务的模型。
translated by 谷歌翻译
现代工业设施在生产过程中生成大量的原始传感器数据。该数据用于监视和控制过程,可以分析以检测和预测过程异常。通常,数据必须由专家注释,以进一步用于预测建模。当今的大多数研究都集中在需要手动注释数据的无监督异常检测算法或监督方法上。这些研究通常是使用过程模拟器生成的狭窄事件类别的数据进行的,并且在公开可用的数据集上很少验证建议的算法。在本文中,我们提出了一种新型的方法,用于用于工业化学传感器数据的无监督故障检测和诊断。我们根据具有各种故障类型的田纳西州伊士曼进程的两个公开数据集证明了我们的模型性能。结果表明,我们的方法显着优于现有方法(固定FPR的+0.2-0.3 TPR),并在不使用专家注释的情况下检测大多数过程故障。此外,我们进行了实验,以证明我们的方法适用于未提前不知道故障类型数量的现实世界应用。
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
Biological systems often choose actions without an explicit reward signal, a phenomenon known as intrinsic motivation. The computational principles underlying this behavior remain poorly understood. In this study, we investigate an information-theoretic approach to intrinsic motivation, based on maximizing an agent's empowerment (the mutual information between its past actions and future states). We show that this approach generalizes previous attempts to formalize intrinsic motivation, and we provide a computationally efficient algorithm for computing the necessary quantities. We test our approach on several benchmark control problems, and we explain its success in guiding intrinsically motivated behaviors by relating our information-theoretic control function to fundamental properties of the dynamical system representing the combined agent-environment system. This opens the door for designing practical artificial, intrinsically motivated controllers and for linking animal behaviors to their dynamical properties.
translated by 谷歌翻译
Modern mobile burst photography pipelines capture and merge a short sequence of frames to recover an enhanced image, but often disregard the 3D nature of the scene they capture, treating pixel motion between images as a 2D aggregation problem. We show that in a "long-burst", forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth. To this end, we devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion. Our plane plus depth model is trained end-to-end, and performs coarse-to-fine refinement by controlling which multi-resolution volume features the network has access to at what time during training. We validate the method experimentally, and demonstrate geometrically accurate depth reconstructions with no additional hardware or separate data pre-processing and pose-estimation steps.
translated by 谷歌翻译
Reinforcement learning can enable robots to navigate to distant goals while optimizing user-specified reward functions, including preferences for following lanes, staying on paved paths, or avoiding freshly mowed grass. However, online learning from trial-and-error for real-world robots is logistically challenging, and methods that instead can utilize existing datasets of robotic navigation data could be significantly more scalable and enable broader generalization. In this paper, we present ReViND, the first offline RL system for robotic navigation that can leverage previously collected data to optimize user-specified reward functions in the real-world. We evaluate our system for off-road navigation without any additional data collection or fine-tuning, and show that it can navigate to distant goals using only offline training from this dataset, and exhibit behaviors that qualitatively differ based on the user-specified reward function.
translated by 谷歌翻译
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data and proved offline reinforcement learning to be an essential toolkit in learning control policies in a model-free setting. An offline reinforcement learning algorithm applied to a dataset collected by a suboptimal non-learning-based algorithm can result in a policy that outperforms the behavior agent used to collect the data. Such a scenario is frequent in robotics, where existing automation is collecting operational data. Although offline learning techniques can learn from data generated by a sub-optimal behavior agent, there is still an opportunity to improve the sample complexity of existing offline reinforcement learning algorithms by strategically introducing human demonstration data into the training process. To this end, we propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data and guide policy training towards optimal behavior while reducing overall sample complexity. Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent. We augmented an existing offline reinforcement learning algorithm Conservative Q-Learning with our approach and performed experiments on data collected from MuJoCo and OffWorld Gym learning environments.
translated by 谷歌翻译
Monitoring changes inside a reservoir in real time is crucial for the success of CO2 injection and long-term storage. Machine learning (ML) is well-suited for real-time CO2 monitoring because of its computational efficiency. However, most existing applications of ML yield only one prediction (i.e., the expectation) for a given input, which may not properly reflect the distribution of the testing data, if it has a shift with respect to that of the training data. The Simultaneous Quantile Regression (SQR) method can estimate the entire conditional distribution of the target variable of a neural network via pinball loss. Here, we incorporate this technique into seismic inversion for purposes of CO2 monitoring. The uncertainty map is then calculated pixel by pixel from a particular prediction interval around the median. We also propose a novel data-augmentation method by sampling the uncertainty to further improve prediction accuracy. The developed methodology is tested on synthetic Kimberlina data, which are created by the Department of Energy and based on a CO2 capture and sequestration (CCS) project in California. The results prove that the proposed network can estimate the subsurface velocity rapidly and with sufficient resolution. Furthermore, the computed uncertainty quantifies the prediction accuracy. The method remains robust even if the testing data are distorted due to problems in the field data acquisition. Another test demonstrates the effectiveness of the developed data-augmentation method in increasing the spatial resolution of the estimated velocity field and in reducing the prediction error.
translated by 谷歌翻译
Stacking (or stacked generalization) is an ensemble learning method with one main distinctiveness from the rest: even though several base models are trained on the original data set, their predictions are further used as input data for one or more metamodels arranged in at least one extra layer. Composing a stack of models can produce high-performance outcomes, but it usually involves a trial-and-error process. Therefore, our previously developed visual analytics system, StackGenVis, was mainly designed to assist users in choosing a set of top-performing and diverse models by measuring their predictive performance. However, it only employs a single logistic regression metamodel. In this paper, we investigate the impact of alternative metamodels on the performance of stacking ensembles using a novel visualization tool, called MetaStackVis. Our interactive tool helps users to visually explore different singular and pairs of metamodels according to their predictive probabilities and multiple validation metrics, as well as their ability to predict specific problematic data instances. MetaStackVis was evaluated with a usage scenario based on a medical data set and via expert interviews.
translated by 谷歌翻译
We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.
translated by 谷歌翻译